
Rozwiązania zadań
z 01.12.2025

Zadanie 1. Udowodnij, że istnieje A ∈ R takie, że dla każdego n ∈ N zachodzi
(

1 + 1
n

)n

⩽ A.

Źródło: zadanie znane i lubiane
Wybór zadania: Tomasz Kossakowski
Rozwiązanie: Podnosząc wyrażenie do potęgi otrzymujemy:
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Dla każdego k ⩾ 0 mamy szacowanie(
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Zatem możemy przyjąć A = e, co kończy dowód.

Strona 1 z 2



Rozwiązania zadań
z 01.12.2025

Zadanie 2. Niech O będzie punktem wewnątrz trójkąta ostrokątnego ABC. Niech
p, q będą różnymi prostymi przechodzącymi przez O, przy czym obie przecinają
boki AB i AC. Oznaczmy K = p ∩ AB, L = p ∩ AC, M = q ∩ AC, N = q ∩ AB.
Okręgi opisane na trójkątach NKO i MOL przecinają się w P ̸= O. Załóżmy, że
punkty A, N, K, B oraz A, L, M, C leżą odpowiednio na bokach AB i AC w tej
kolejności. Udowodnić, że

<)BAC = <)PKL + <)PMN.

Autor zadania: Bartosz Trojanowski
Rozwiązanie: Zauważmy, że

<)AMP = <)PML = 180◦ − <)POL = <)POK = <)PNK = 180◦ − <)PNA.

Stąd czworokąt ANPM jest cykliczny. Mamy też

<)PLK = <)PLO = <)PMO = <)PMN = <)PAN = <)PAK,

więc czworokąt AKPL również jest cykliczny. Stąd

<)BAC = <)BAP + <)CAP = <)NAP + <)LAP = <)PMN + <)PKL,

a to kończy dowód. ■
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