

 Problem 1. Prove that there exists $A \in \mathbb{R}$ such that for every $n \in \mathbb{N}$ we have

$$\left(1 + \frac{1}{n}\right)^n \leq A.$$

Source: a well-known and well-liked problem

Selected by: Tomasz Kossakowski

Solution: Expanding the expression using the binomial theorem, we obtain:

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k}.$$

For every $k \geq 0$ we have the estimate

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!} \leq \frac{n^k}{k!},$$

and hence

$$\binom{n}{k} \frac{1}{n^k} \leq \frac{1}{k!}.$$

Therefore,

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} \leq \sum_{k=0}^n \frac{1}{k!} \leq \sum_{k=0}^{\infty} \frac{1}{k!} = e.$$

Thus, we may take $A = e$, which completes the proof.

Problem 2. Let O be a point inside an acute triangle ABC . Let p, q be two distinct lines passing through O , both intersecting the sides AB and AC . Denote

$$K = p \cap AB, \quad L = p \cap AC, \quad M = q \cap AC, \quad N = q \cap AB.$$

The circumcircles of triangles NKO and MOL intersect again at a point $P \neq O$. Assume that the points A, N, K, B and A, L, M, C lie on the sides AB and AC respectively in this order. Prove that

$$\angle BAC = \angle PKL + \angle PMN.$$

Author: Bartosz Trojanowski

Solution: Observe that

$$\angle AMP = \angle PML = 180^\circ - \angle POL = \angle POK = \angle PNK = 180^\circ - \angle PNA.$$

Hence the quadrilateral $ANPM$ is cyclic. We also have

$$\angle PLK = \angle PLO = \angle PMO = \angle PMN = \angle PAN = \angle PAK,$$

so the quadrilateral $AKPL$ is also cyclic. Therefore,

$$\angle BAC = \angle BAP + \angle CAP = \angle NAP + \angle LAP = \angle PMN + \angle PKL,$$

which completes the proof. ■

