ﬁe Solutions to Problems

o, from 11/17/2025

MathLovers

| Problem 1. Determine whether a knight can visit every square of a 5 x 5 chessbo-
ard exactly once and return to the starting square. What about a 4 x4 chessboard?

Source: Wikipedia

Task selection: Maria Janyska

Solution: Let us begin with the 5 x 5 board. We will show that a knight cannot
visit every square exactly once and return to the starting square, i.e. that there
is no Hamiltonian cycle where the squares are treated as vertices of a graph and
the knight’s moves as edges.

Observe that with every move the knight passes from a black square to a white
one or vice versa; it never lands twice in a row on a square of the same color.

The 5 x 5 chessboard has 25 squares, so in order for the knight to visit each square
exactly once and return to the start, it must make exactly 25 moves. However,
after an odd number of moves the knight always lands on a square of opposite
color from the one it started on; thus after 25 moves it cannot be on a square of
the same color, in particular not on the starting square. This is a contradiction.

Note that this observation tells us that for any n x m board with both m and n
odd, there cannot exist a Hamiltonian cycle for a knight.

Thus on a 5 x 5 board no Hamiltonian cycle exists.
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Now let us consider the 4 x 4 chessboard. In this part we again use the interpreta-
tion of the board as a graph described above. We want to show that a Hamiltonian
cycle on such a board also does not exist.

Assume that a Hamiltonian cycle exists, so the chessboard can be represented by
a graph containing such a cycle. We will use a lemma from graph theory whose
proof appears at the end of this solution. By Lemma 1, for a graph containing a
Hamiltonian cycle, after removing k vertices (together with incident edges), the
graph breaks into at most £ connected components. Thus we may remove the 4
central squares of our chessboard and count the number of remaining connected
components. There are 6 of them—after linking each vertex to all squares it can
move to, we obtain four isolated vertices and two cycles of four vertices each
located on the boundary. Since 4 < 6, we obtain a contradiction, because if a
Hamiltonian cycle existed, there would be at most 4 connected components.

Thus we also obtain a contradiction for the 4 x 4 chessboard.

Lemma 1. For a graph containing a Hamiltonian cycle, after removing £ vertices
(together with their incident edges), the graph can be divided into at most k
connected components.

Assume to the contrary that after removing k vertices, the graph breaks into [
connected components with [ > k. We start adding back the removed vertices
along with their edges. By the definition of a Hamiltonian cycle, each vertex is
visited exactly once, so we may pass from one component to another only through
the added vertices, but each such vertex can be used only once. We need to connect
the [ components into a closed cycle, i.e. fill [ “gaps” between them. When we add
one vertex, we can connect at most two components, so after adding k& vertices
there remain [ — k > 1 gaps, which means it is not a cycle. This contradiction
proves the bound [ < k.
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| Problem 2. In a trapezoid ABCD with bases AB,CD, the diagonals intersect
at point P. Given that [CPD] = 8,[APD] = 16, compute the area of the entire
trapezoid.

Remark: The notation [ABC], i.e. the name of a polygon in square brackets,
denotes the area of that polygon.

Source: School Stage of the Regional Mathematics Contest organized by the Y.6dz
School Superintendent for primary school students, 2025/26.
Task selection: Maria Janyska

Solution:

A B

Solution 1. Since the bases AB,CD are parallel, we may write the equality of
areas [ADB] = [ACB|. After subtracting the common part, i.e. [APB], we get
[BPC] = [APD] = 16.

Triangles CPD and C'AD share the same base and have heights parallel to each
other. Since we know their areas, we can conclude that the ratio of heights onto
side C'D is 1 : 3, which by parallelism gives that the height of triangle APB from
vertex P equals the difference between the height of C AD onto C'D and the height
of CPD from P. Thus the ratio of the considered heights CPD to APB is 1 : 2.

Triangles APB and C'PD are similar, since angles JABP and <CDP are alter-
nate interior angles, and likewise < BAP and 4 DCP. Thus the ratio of their areas
equals the ratio of the squares of their corresponding heights. Since this ratio is
2 : 1, the ratio of areas is 4 : 1, and because [CPD] = 8, we get [ABP| = 32.

Hence the total area of the trapezoid is

[ABCD] = [APB] + [APD] + [CPD] + [BPC] = 8 + 16 + 32 + 16 = 72.
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Solution 2. As in the previous solution, we first show that [BPC] = 16.

Observe that triangles APD and C'PD share the same height from point D.
Knowing their areas, we conclude that the ratio of their bases is AP : PC' =2 : 1.

Similarly, triangles APB and C'PB share the same height from point B. We
already know the ratio of their bases and the area of one of them, equal to 16.
The ratio of their areas equals the ratio of the bases onto which the common
height is dropped, so:

[APB]: [CPB]=AP:CP=2:1.
Therefore [APB] = 32.

Adding the four areas yields the same result:

[ABCD)] = T72.
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