

Solutions to the Problems from [date]

Problem 1. Klara's math grades are as follows:

6 with weight 1

6 with weight 1

6 with weight 1

5 with weight 2

4 with weight 2

Today, the class is taking a major test with weight 3. The grading scale is standard: from 1 to 6. What grade does she need to get so that the weighted average of her grades is greater than or equal to 5.5?

Author: Scarlett Lafa

Answer: she cannot have such an average.

Solution: Klara's weighted average after the test will be as follows (let a denote her grade on the big test):

$$\frac{6 \cdot 1 + 6 \cdot 1 + 6 \cdot 1 + 5 \cdot 2 + 4 \cdot 2 + a \cdot 3}{1 + 1 + 1 + 2 + 2 + 3} = \frac{36 + 3a}{10}.$$

This average must be greater than or equal to 5.5, that is,

$$\frac{36+3a}{10} \geqslant 5.5 / \cdot 10$$
$$36+3a \geqslant 55$$
$$3a \geqslant 19$$
$$a \geqslant 6.\overline{3}.$$

This is impossible, because the highest grade Klara can receive is 6.

Solutions to the Problems from [date]

Problem 2. For $a, b \ge 0$, prove that the following inequality holds:

$$2a^2 + 2b^2 + a + b \geqslant 2ab + 2\sqrt{ab}$$

Author: Scarlett Lafa

Solution: Note that for $a, b \ge 0$, $a^2 + b^2 \ge 2ab \ge ab$, hence

$$a^2 + b^2 \geqslant ab$$
 / $\cdot 2$

$$2a^2 + 2b^2 \geqslant 2ab.$$

Also note that $(\sqrt{a} - \sqrt{b})^2 \geqslant 0$, therefore

$$a+b-2\sqrt{ab}\geqslant 0$$

$$a+b \geqslant 2\sqrt{ab}$$
.

Adding the two inequalities we obtain

$$2a^2 + 2b^2 + a + b \ge 2ab + 2\sqrt{ab}$$
.